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Wave scattering properties of multiple weakly coupled complex systems
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The statistics of the scattering of waves inside single ray-chaotic enclosures have been successfully described
by the random coupling model (RCM). We expand the RCM to systems consisting of multiple complex ray-
chaotic enclosures with various coupling scenarios. The statistical properties of the model-generated quantities
are tested against measured data of electrically large multicavity systems of various designs. The statistics of
model-generated transimpedance and induced voltages on a load impedance agree well with the experimental
results. The RCM coupled chaotic enclosure model is general and can be applied to other physical systems,
including coupled quantum dots, disordered nanowires, and short-wavelength electromagnetic and acoustic
propagation through rooms in buildings, aircraft, and ships.
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I. INTRODUCTION

It is of interest to study the scattering properties of com-
plex ray-chaotic systems in the semiclassical limit. Examples
include atomic nuclei [1], quantum dot transport [2], and the
flow of electromagnetic (EM) waves through electrically large
resonant systems (defined as those for which λ � V 1/3, where
λ is the wavelength of light and V is the system volume)
[3–8]. Concatenating two or more such systems is also of
great interest but not as extensively studied. Such coupled-
cavity systems can be realized in a wide range of physical
platforms from interconnected photonic crystal cavities [9]
to Cooper pair boxes in superconducting resonators [10] to
microwave (MW) billiards [11] and the complex acoustic and
electromagnetic environment in ships and aircraft containing
multiple connected compartments [12–14]. It has proven pos-
sible to perform experiments for such interconnected systems
and to measure transmission as a function of coupling. Exam-
ples include measurements of conductance of quantum dots
systems with coupled electron billiards [15–17], resistance
of disordered nanowires modeled by a cascade of quantum
dots [18–21], and simulating resonance strength of coupled
quantum mechanical systems with superconducting MW bil-
liards [22], etc. Likewise, the EM wave properties of inter-
connected electrically large enclosures, like the power flow
and the impedance or scattering parameters, are also widely
studied in engineering [23,24] and realistic situations ranging
from computer enclosures to rooms or buildings [14,25–27].
These settings are typically found to be ray chaotic and
highly overmoded (i.e., many resonant modes at and below
the frequency of interest) [28], posing challenges to both
numerical and experimental analysis means. A ray-chaotic

*skma@umd.edu

enclosure has the property that two rays launched with slightly
different initial conditions will separate exponentially with
time as they continue bouncing from boundary walls and
obstructions inside the structure [29,30]. On the other hand,
a minute change of the structure boundary condition can dras-
tically affect the pre-established field profile inside the system
[31–33]. Though deterministic approaches are available [34],
the chaotic properties make the numerical solutions vulner-
able to small changes and uncertainties of interior structure
details.

In the situations just described, statistical and/or approxi-
mate approaches can be more useful than deterministic meth-
ods (e.g., direct numerical computations for a specific con-
figuration). Examples include the Baum-Liu-Tesche electro-
magnetic topology approach in which the system is separated
into subvolumes, and waves traveling between the subvolumes
are computed [35]. In the power balance method the mean
power flow through connected overmoded cavities is calcu-
lated [25,36,37]. The dynamical energy analysis method in-
volves solving for the phase-space energy density on a gridded
domain [38] and describes mean high-frequency wave energy
distributions in all subsystems [39,40]. The Random Coupling
Model (RCM) determines the statistical properties of the
impedance (Z) and scattering (S) parameters for complex
enclosures [41–47]. In contrast to the other above-mentioned
methods, the RCM generates both mean-field and statistical
predictions, treats interference, and utilizes a minimum of in-
formation, namely, the system coupling details and the enclo-
sure loss parameter [48–52]. It was recently demonstrated that
two single enclosures with a specific scaling relationship with
regard to size, frequency, and wall conductivity share the same
normalized impedance statistics [53]. This work paves the
way for experimentally testing the wave properties of large,
coupled complex systems in a typical laboratory environment
by studying their scaled-down-in-size counterparts [54,55].
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It has been conjectured that the statistical properties of
quantum spectra of systems that are chaotic in the classi-
cal limit can be described by random matrix theory (RMT)
[56–60]. In particular, RMT can be applied to wave chaotic
systems in the short-wavelength regime. The Heidelberg ap-
proach [61] describes wave scattering from a highly over-
moded complex system connected to the outside world by a
finite number of scattering channels [62–66]. The common ap-
proach is to model the scattering (S) matrix, which relates the
outgoing waves to the incoming waves. RMT-based studies
for overmoded cavities with one or more scattering channels
are treated in Refs. [43,67,68]. The general treatment of
apertures between enclosures in terms of multiple correlated
channels is formulated in Ref. [69].

In addition to the S matrix, the impedance matrix is also
a long-studied quantity in many semiclassical wave-scattering
treatments. There is a simple bilinear relationship between S
and Z (given below), so that they essentially contain the same
scattering information about the system [70]. The impedance
(Z) matrix is directly related to the reaction (K) matrix from
nuclear scattering theory as iK = Z [62,71–73]. Earlier RCM
works have studied the statistical properties of the system
scattering, impedance, and admittance matrix for a single
complex system [48,68,74–76]. One may inspect the statis-
tical properties of the system through either the S or Z matrix,
without loss of generality.

We describe in this manuscript our efforts (1) to ex-
perimentally investigate electrically large coupled enclosure
systems utilizing both “full-scale” and “miniaturized” over-
moded electromagnetic cavities; (2) to study the propagation
of waves in such systems under a variety of conditions, by
varying single-cavity loss, intercavity-coupling strength, and
the total number of connected cavities; and (3) to extend the
random coupling model to multicavity systems and compare
the theoretical predictions with the measured data. The paper
is organized as follows: In Sec. II, we introduce the experi-
mental set-up and discuss the measured results; in Secs. III
and IV, we introduce a statistical model to study such cavity
cascade systems based on an extension of the RCM; and in
Sec. V, we compare the predicted impedance and induced
voltage statistics with measured data for both scaled and full-
scale cavity cascade set-ups. We summarize and discuss future
directions in Sec. VI.

II. EXPERIMENTAL SET-UP

Here we describe the basic topology of the coupled-cavity
system, a linear cavity chain connected through apertures as
shown schematically in Fig. 1. The cavities are electrically
large and have an irregular interior structure on length scales
greater than the wavelength of the EM waves that are sent
into the system. For the full-scale experiment, EM waves
from 3.95 to 5.85 GHz are injected into cavities of dimension
0.762 × 0.762 × 1.778 m3 through WR178 band single-mode
waveguides (see Appendix B 1). Correspondingly, the ×20
scaled-down version has the dimension of 0.038 × 0.038 ×
0.089 m3 and is fed by EM waves from 75 to 110 GHz through
WR10 single-mode waveguides from a Virginia Diodes Vec-
tor Network Analyzer (VNA) Extenders (Figs. 1 and 6). The

FIG. 1. Schematic of the cavity cascade experimental set-up. N
cavities are connected in a linear chain with aperture connections.
Single-mode ports are installed at the first and last cavities in the
chain. The scattering properties are measured with a VNA and fre-
quency extenders. Independently controlled mode stirrers are located
in each cavity. a and b refer to the two sides of a cavity in the cascade.

cavities contain mode stirrers of irregular shape to create
complex scattering, as well as many distinct realizations of ray
chaos in their interior. With the scaled-down dimension and
scaled-up operating frequency, identical statistical electrical
properties are achieved in the two configurations [53].

Apertures are created between the cavities to establish a
controlled degree of intercavity coupling. In the scaled cavity
case, rectangular or circular shaped apertures are employed
between nearest-neighbor cavities in the chain. The size and
shape of the apertures are such that when the transverse fields
in the apertures are represented in a basis of the modes of
a waveguide with equivalent cross section, either 5 or 100 of
these modes would be above cut-off (propagating) at 110 GHz
for the rectangular or circular apertures, respectively. In the
full-scale set-ups, circular-shaped apertures are adopted which
allow 100 propagating modes at 5.85 GHz. The area of both
sets of apertures are small compared with the surface area of
the cavity to ensure a reasonably well-defined single-cavity
volume (Aaper/Acav ≈ 0.78% for a one-circular-aperture cav-
ity, where Acav, Aaper are the cavity inner wall area and the
aperture surface area).

The total number of cavities making up the linear chain
is varied from 1 to 3. In order to create a large ensemble for
statistical analysis, independent mode stirrers are employed
inside each individual cavity [74,77–79]. Single-mode waveg-
uide ports are created on the first and last cavities in the
cascade. The 2 × 2 S parameters of the entire cavity cascade
system are measured with the VNA. The initial positions of
the mode stirrers are randomly assigned. We then rotate the
stirrers by the same increment per step. The measurement
cases described in this paper are summarized in Table I. For
each scaled cavity cascade system, we conduct measurements
of the 2 × 2 S matrix with 100 001 frequency points from
75 to 110 GHz and then repeat the frequency sweep after
perturbing the system for a total of 15 realizations. In the
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TABLE I. Measurement cases employed in this manuscript. Ncav

and α refer to the total number of cavities in the cascade chain and
the single-cavity loss parameter. The physical scale and the type
of aperture between cavities are described in the columns labeled
“Dimension” and “Aperture.”

Ncav α Dimension Aperture (coupling strength)

1 9.1 Scaled N/A
2 and 3 9.1 Scaled Rectangular (10−4)
2 and 3 9.1 Scaled Circular (10−2)
1 5.7, 7.5, and 9.7 Full scale N/A
2 and 3 5.7, 7.5, and 9.7 Full scale Circular (10−2)

full-scale measurements, the 2 × 2 S matrix is measured over
16 001 frequency points from 3.95 to 5.85 GHz. The system
is perturbed 200 times and measured after each perturbation.
The statistical analysis of the experimental data are conducted
utilizing the full frequency range and all realizations, which
leads to an ensemble of ∼106 measured points in both the
scaled and the full-scale set-ups. The RCM is formulated in
terms of impedance (Sec. III), and hence we shall examine
the data in terms of impedance Z rather than S. The S and Z
parameters are connected through the bilinear transformation,
S = Z0

1/2(Z + Z0)−1(Z − Z0)Z0
−1/2, where Z0 is a diagonal

matrix whose elements are the characteristic impedance of the
waveguide channels connected to the ports.

The amount of loss in a cavity is controlled by varying
the temperature of the copper walls in the scaled cavities
[53] and by placing RF absorber cones in the full-scale set-
ups. The single-cavity “lossyness” is described by the RCM
loss parameter α, which is defined as the ratio of the 3-dB
bandwidth of a typical resonance mode to the mean frequency
spacing between the modes [46,53]. The loss parameter basi-
cally represents the number of overlapping modes at a given
frequency. At room temperature the loss parameter of a scaled
and a full-scale cavity can both be made equal at a value
of α ∼ 9. By matching the single-cavity loss and utilizing
the scaling properties of Maxwell’s equations, equivalent
EM wave statistical properties are expected between the two
experimental set-ups [53].

III. EXPERIMENTAL RESULTS

We first present the measured impedance statistics of the
scaled cavity system with different connected cavity number
and aperture coupling as shown in Fig. 2. The small-in-size
character of the scaled system allows us to easily create
various cavity connection scenarios and change the intercavity
coupling. The quantities of interest as plotted in Fig. 2 are the
PDFs of the raw input impedance Zin and transimpedance Zt ,

FIG. 2. Statistical distributions of the measured impedances Zin and Zt of the scaled cavity cascade systems. [(a) and (b)] The PDFs of
imaginary and real part of the measured Zin. [(c) and (d)] The PDFs of Zt imaginary parts from a one- to three-cavity (cav) cascade system
with circular (circ) and rectangular (rec) aperture connections, respectively. The inset in (d) is the complete 1-cavity Im(Zt ) PDF curve.

022201-3



SHUKAI MA et al. PHYSICAL REVIEW E 101, 022201 (2020)

defined as:

Zin = UT X

IT X
, Zt = URX

IT X
, (1)

where TX(RX) refers to the transmitting(receiving) port, and
U (I ) is the complex phasor voltage (current) at the single-
mode ports. As shown in Figs. 2(a) and 2(b), the statistics of
the measured Zin remain essentially unchanged as the total
number of connected cavities or the aperture coupling are
varied. The cavity-coupling strength is defined as the ratio
between the total number of propagating aperture modes
and the total number of cavity modes at a given frequency
[80]. In the current set-up, the cavity-coupling strength of the
circular (rectangular) aperture at 110 GHz is on the order of
10−2 (10−4), which is considered to be in the weak-coupling
regime. In this limit we believe that the RCM should continue
to work, and it is valid to extend it in the manner described
below in Sec. IV. It will be shown later that the Zin statistics
of a high-loss, weakly coupled cavity cascade system is dom-
inated by the response from the first cavity [49]. Despite this
apparent insensitivity to the number of cavities in the cascade,
we have recently utilized a machine learning algorithm to
distinguish the number of cavities in the chain from raw Zin

data [81].
In contrast to Zin, the total cavity number plays a major

role in the statistics of the transimpedance Zt as shown
in Figs. 2(c) and 2(d) [Re(Zt ) statistics in Appendix B 4].
The fluctuations of Zt become smaller as the total number
of connected cavities is increased. Note that with stronger
coupling [circular aperture tests shown in Fig. 2(c) vs the
rectangular aperture in Fig. 2(d)], the measured Zt shows a
larger chance to experience high impedance values compared
with the weak-coupling cases (the rectangular aperture has
only five propagating modes).

IV. MODEL OF COUPLED CAVITIES

Since the late 2000s, the RCM has been introduced
and studied extensively by comparing the statistical predic-
tions with single chaotic enclosure experiments with vari-
ous wavelengths, cavity losses, dimensionality, and nonlin-
ear elements inside the cavity [46,53,82–84]. RCM gen-
erates statistical predictions of system impedance matrices
by incorporating the system-specific properties with a uni-
versal fluctuating core. The system-specific features include
the radiation impedance of ports and apertures and the
short-orbits between them. These features are characterized
by the average impedance Zavg = 〈Zcav〉realizations since such
properties occur in each individual system configuration in
an ensemble of realizations [45]. The universally fluctu-
ating core of the system is described by the normalized
impedance matrix ξRCM [42,43,68,74]. The fluctuating overall
cavity impedance matrix can be written as Zcav = iIm[Zavg] +
Re[Zavg]0.5ξRCMRe[Zavg]0.5. The universal ξRCM is defined as

ξRCM = − i
π

∑
n

wnw
∗
n

(k2
0−k2

n )/�k2
n+iα

, which is a sum over all modes
n of the closed cavity. Here wn is a Gaussian random variable
which represents the coupling between a port and the nth
cavity mode. This choice of random coupling gives the RCM
its name and arises from the description of the modes as a
random superposition of plane waves, also known as the Berry

hypothesis [58]. The statistics of the eigenmode amplitudes
of wave chaotic cavities is consistent with the Berry hypoth-
esis for systems with and without time-reversal invariance
[85–87]. Here k0 and kn are the central wave number and the
wave-number eigenvalues of a random matrix selected from
one of the three Gaussian random ensembles (orthogonal,
unitary, and symplectic) [4,62,68,88]. The quantity �k2

n is the
average mode spacing for modes near k0 which depends on the
enclosure dimensionality, volume, and mode number values.
The last quantity in ξRCM is the cavity loss parameter α. The
model assumes that every mode of the closed system has
uniform loss. The loss parameter can be explicitly expressed
as α = k2/(Q �k2

n ), where k is the wave number of interest,
and Q is the quality factor of the closed system modes [46].
The loss parameter is generally a slowly varying function of k.
The statistics of ξRCM depend only on α [46,53,68]. For small
loss (α < 1), the Re(ξRCM) PDF is peaked between 0 and 1
and the Im(ξRCM) PDF is centered at 0 and has a broad range
of values. In the limit of high loss (α � 1) the PDFs become
approximately Gaussian and are centered at 1 [Re(ξRCM)] and
0 [Im(ξRCM)] [26,46].

Here we apply an RCM-based model which can be used to
make statistical predictions of impedance values in intercon-
nected systems of chaotic cavities. Our approach builds on
an earlier work for single-mode connection between cavities
[49]. As shown schematically in Fig. 1, our approach first
adopts RCM to describe each individual chaotic enclosure
[46,53]. The system-specific details are identified in orange
in Fig. 1. These consist of the single-mode waveguide ports
and the multimode apertures between cavities and are de-
scribed by the radiation impedance Zport and the radiation
admittance matrix Yaper, respectively. With known geometry,

these frequency-dependent complex coupling quantities can
be determined through either full-wave numerical simulations
or direct radiation measurements [see Appendix B, Sec. 2].
For an N-mode aperture we utilize the aperture admittance
matrix Yaper (an N × N matrix) to describe its deterministic

properties as a function of frequency. We use Zport to represent
the deterministic properties of the single-mode ports in a
manner identical to previous treatments of the port radiation
impedance [45,53,68,89].

An important consideration is the number of aperture
modes (both propagating and evanescent) to include in Yaper.

The convergence of the impedance statistical prediction with
the total number of included aperture modes is investigated in
Appendix B 2. The single-cavity radiation admittance matrix
can be written as a block-diagonal complex and frequency-
dependent matrix

Yrad =
[

Yrad,a 0

0 Yrad,b

]
. (2)

As shown in Fig. 1, the Yrad subscripts “a” and “b” refer to
the connection on the left and right sides of the cavity in the
linear chain. The choice of Yrad solely depends on the specific
cavity connection (i.e., a port or aperture that allows Na modes
in “a” and Nb modes in “b”). The off-diagonal zeros reflect
the assumption that the apertures and ports are sufficiently
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separated such that no direct connection exists between them.
This assumption can be lifted if direct illumination exists
between apertures and ports [69]. The RCM single-cavity
admittance matrix Ycav is then constructed as shown in Eq. (3)
from Yrad and the (Na + Nb) × (Na + Nb) dimensionless uni-
versal fluctuation matrix ξRCM, whose statistics are determined

solely by the loss parameter α of the cavity,

Ycav = iIm(Yrad ) + Re(Yrad )0.5ξRCMRe(Yrad )0.5. (3)

The matrix ξRCM can be calculated using a Monte Carlo

technique [26,42,43,53]. The single-cavity admittance matrix
Ycav reflects the chaotic universal fluctuations from ξRCM [46],

“dressed” by the system-specific properties of the ports and
apertures described by Yrad.

For a description of the statistical properties of the entire
cavity cascade, cavities can be connected together by enforc-
ing continuity of voltages and currents at the cavity-coupling
planes, [

Ia

Ib

]
= Ycav

(i)

[
Ua

Ub

]

−Ib = YL
(i+1)Ub. (4)

In Eq. (4), the superscript i refers to the index of the cavity
running from 1 to N as shown in Fig. 1. YL

(i+1) is the overall
load admittance, including the (i + 1)st cavity and everything
beyond it. By solving Eq. (4) in matrix form, we have:

Ub = −[
Ybb

(i) + YL
(i+1)

]−1
Yba

(i) Ua, (5)

YL
(i) = Yaa

(i) − Yab
(i)

[
Ybb

(i) + YL
(i+1)

]−1
Yba

(i). (6)

Equation (5) connects the voltages on two sides of a
cascade unit, and Eq. (6) gives the YL recursion relationship

which calculates the load admittance YL
(i) of the ith cavity

given the knowledge of YL
(i+1). With this recipe, the complete

RCM cavity cascade model is created as follows, starting by
computing the load admittance YL

(i) presented by the load

impedance at the N th cavity [Y (N )
L ] and working back to the

first cavity using Eq. (6). Combined with the single-cavity
admittance matrices and the input voltage at the first cavity,
we use Eq. (5) to calculate the voltages at each cavity
connection and, finally, at the output port of the N th cavity.
(Detailed information of the Yab matrices can be found in
Appendix A.) One can then make predictions for the statistics
of Zin and Zt of the entire system [see Eqs. (A8) and (A9) in
Appendix A] based on the minimal information of cavity loss
and system coupling.

Two conclusions are drawn from the inspection of the
Zt and Zin formulas: (1) With high cavity loss (α > 1) and
weak intercavity coupling, the expression for Zin can be
approximated as Zin ≈ Zport/ξ

(1)
aa , where Zport is the radiation

impedance of the input waveguide port, and ξ (1)
aa is the di-

agonal component of the ξRCM matrix of the first cavity. In

this case, the statistics of Zin has a mean equal to Zport and a
fluctuation determined solely by the loss parameter of the first
cavity, consistent with the data in Figs. 2(a) and 2(b). (2) As

shown in Eq. (A9), the transimpedance Zt of the multicavity
system is expressed as Zt = �(1)[

∏N−1
i=2 �(i)]�(N )Zin, where

N is the total number of cavities [see Appendix A, Sec.
3]. It is shown in the Appendix that the multiplier matrix
�(i) ∝ Y (i)

ba
/Y (i)

aa
. The quantities Y (i)

aa
and Y (i)

ba
represent the

diagonal and off-diagonal block matrices of the overall cavity
admittance matrix Y (i)

cav
. The matrix elements of the diagonal

matrix Y (i)
aa

can be expressed as the product of the aperture ad-
mittance matrix and the diagonal RCM normalized impedance
ξ

aa
[see Appendix A, Sec. 1]. The off-diagonal matrix Y (i)

ba

is the product of the aperture admittance matrix and ξ
ba

.

With high system losses, the diagonal (off-diagonal) part of
the RCM normalized impedance ξ become Gaussian random

variables with unit (zero) mean [46,49]. Thus the elements of
�(i) have values small compared to 1. Considering that the
statistics of Zin remain essentially unchanged as cavities are
added, the addition of another cavity in the cascade chain will
introduce one more �(i) matrix as an extra multiplier, resulting
in Zt having smaller fluctuations, as shown in Figs. 2(c) and
2(d). More specifically, as one increases the total number of
cavities in the cascade from 1 to 3, the standard deviation of
the experimental Im(Zt ) distribution is computed to be 5.28,
1.15, and 0.21 � for the rectangular aperture cases and 5.28,
2.89, and 1.47 � for the circular aperture cases. This result is
consistent with the model generated Im(Zt ) results as shown
in Fig. 3. The standard deviations of the theory predicted
Im(Zt ) of two- and three-cavity systems are 1.06 and 0.25 �

for the rectangular aperture cases, and 2.74 and 1.52 � for the
circular aperture cases.

V. COMPARISON AND DISCUSSION

With the single-cavity RCM loss parameters and system
coupling detail presented, we are in position to compare
impedance statistics from model predictions with those mea-
sured in experiments. The loss parameters, obtained from
single-cavity transmission measurements, are α = 9.1 for the
scaled cavity and α = 9.7 for the full-scale cavity with six
absorber cones [53]. Since all the cavities inside the linear
array are electrically identical (nominally), the same cavity
loss parameter α will be assigned to each cavity in the
cascade. The port and the aperture radiation admittances are
obtained by direct measurements and numerical simulations
in computer simulation technology (CST), respectively [see
Appendix B, Sec. 2]. Combining this information, we gen-
erate an ensemble of two- and three-cavity cascade system
impedances and compare its statistics with those of the mea-
sured data. In Fig. 3, we compare the statistics of Im(Zt ) for
cavity cascade systems with various cavity numbers, coupling
strengths, and physical dimensions. Figure 3(a) shows PDFs
of Im(Zt ) for two- and three-cavity systems when the cavities
are connected by rectangular-shaped apertures having five
propagating modes (10−4 coupling strength). The statistics
of the two- and three-cavity cascade theory–generated Im(Zt )
(solid lines) match well with the measured data (dashed lines).
A minor mismatch between the two-cavity Im(Zt ) statistical
comparison is observed. Compared to the measurements, the
theory-generated Im(Zt ) PDFs have higher peak values near
zero, which indicates that the theory predictions tend to have
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FIG. 3. Comparison of distributions of the imaginary part of transimpedance [Im(Zt )] between the experimental curves and the theoretical
predictions for two- and three-cavity cascade systems. The red curves are for two cavities and blue curves are for three cavities. Panels (a) and
(b) are from scaled measurements with rectangular- and circular-shaped apertures, respectively. Figure (c) is from the full-scale system. The
inset shows schematically the shape of the aperture that is applied in the experiment.

smaller magnitude values. The intercavity-coupling strength
is increased to 10−2 by employing the circular shaped aper-
ture, and as shown in Fig. 3(b), this increases the magnitude of
fluctuations of the transimpedance for both the two- and three-
cavity systems. Results for the full-scale measurements with
circular aperture connections are shown in Fig. 3(c). Good
agreement between model and measurements are obtained in
all cases. Additional cavity cascade experimental results are
shown in Appendix B, Sec. 4.

Aside from validating the prediction performance of the
RCM cavity cascade model, another key aspect of our exper-
iment is to study the miniature cavity technique for the mul-
ticavity systems. As introduced in Sec. I, the full-scale cavity
is built with linear dimensions 20 times larger compared with
its scaled counterpart. With the operating frequency properly
scaled and loss parameter made equal by adjusting the wall
conductivity, the statistical wave properties of the two set-ups
are expected to be identical [53]. The direct comparison of
system transimpedance statistics can be examined by com-
paring the Im(Zt ) PDFs shown in Figs. 3(b) and 3(c). The
peak values and spreads of the scaled and full-scale two-
and three-cavity Im(Zt ) PDFs are in similar ranges. For the
scaled two- and three-cavity Im(Zt ) PDFs, the peak values are
0.17 and 0.28 and the full widths at half maximum (FWHMs)
are 5.1 and 3 �, respectively. For the full-scale two- and
three-cavity Im(Zt ) PDFs, the peak values are 0.15 and 0.21
and the FWHMs are 5.8 and 4 �, respectively. We believe that
this imperfect agreement between scaled and full-scale Im(Zt )
PDFs is caused by a difference in the aperture thickness.
The circular aperture thickness is about 1λop in the scaled
cavities but only 0.04λop in the full-scale set-up (λop repre-
sents the characteristic operating wavelength). Note that the
finite thickness of the apertures are included in the full-wave
Yrad simulations, resulting in good agreement between model
and measurements. By scaling the thickness of the full-scale
aperture to ∼1λop, we calculate the frequency-dependent Yrad

with CST. The corresponding full-scale Yrad is identical to that
of the scaled aperture. If one conducts full-scale multicavity
RCM calculations using this “thick aperture” Yrad, then the
obtained impedance statistics match well with the scaled cases
[solid lines in Fig. 3(b)].

We are also able to calculate the statistics of the magnitude
of the induced voltage delivered to a 50-� load impedance
attached to the last cavity in the 1D chain due to a given
input to the port on the first cavity. The load induced voltage
VL is calculated from the measured impedance based on
the analysis presented in Refs. [26,55]. The model-generated
induced voltage is calculated using Eqs. (A8) and (A9) in
Appendix A. The input powers used in the experimental and
model-generated VL are set to be 1 W, and the statistical
analysis of VL are conducted throughout the entire frequency
range. Despite the differences in aperture thickness, good
agreement between these two set-ups is found for the induced
voltage statistics shown in Fig. 4. The experimental results
of the load induced voltage PDFs for scaled and full-scale

FIG. 4. The PDFs of induced voltage on a 50-� load attached to
the last cavity (cav) of the full-scale cavity cascade systems (3.95–
5.85 GHz) and its scaled counterparts (75–110 GHz), assuming
1-W input on the single-mode port of the first cavity. The curves
corresponding to the one-, two-, and three-cavity system are color
coded in blue, yellow, and green, respectively. The full-scale system
experimental (theoretical) data are shown at dashed (solid) lines, and
the scaled experiment data are shown as dotted lines.

022201-6



WAVE SCATTERING PROPERTIES OF MULTIPLE WEAKLY … PHYSICAL REVIEW E 101, 022201 (2020)

cavity systems are represented by dotted and dashed lines,
respectively. The results show that such a scaling technique
can be very conveniently extended from single to multicavity
systems, allowing investigation of systems with a large num-
ber of cavities and more sophisticated connection topology.
The experimental results in Fig. 4 are also in good agreement
with the model predictions (solid lines).

The proposed theoretical formulation is not expected to
work at the extreme high-loss limits (α → ∞) due to the
failure of the random plane-wave hypothesis, which is a
prerequisite of the RCM. This breakdown can be expected
when the estimated 3-dB width of a mode becomes com-
parable to the operating frequency (Q ∼ 1). However, the
model is valid for moderately large loss (α � 1), and the
impedance statistics simplify to Gaussian distributions in this
limit [42,43]. The RCM theoretical formulation can be applied
to lower loss systems (α � 1), but the stronger impedance
fluctuations of very low-loss systems poses great challenges
for the acquisition of good statistical ensemble data by either
numerical or experimental methods [75,90]. The formulation
will also require modifications of the cavity total admittance
matrix when the intercavity-coupling strength is increased
substantially. Nonzero off-diagonal components of the Yrad

matrix [Eq. (2)] must be determined when direct coupling be-
tween the input and output channels of the cavity is prominent.
Failure to include these off-diagonal terms may contribute to
the lack of detailed agreement between the model-generated
and experimental results in Fig. 3.

VI. CONCLUSION

In this paper we report experimental results on the scat-
tering properties of coupled multicavity complex systems
and present a model based on the random coupling model
to generate an ensemble of impedance predictions whose
statistical properties agree well with the measurements. The
proposed model holds for all scenarios considered in this
paper, including varying cavity number, cavity loss, and in-
tercavity coupling. The frequency and dimensional scaling
technique is also expanded from the single-cavity case [53]
to the multicavity regime, opening up new possibilities to
study electrically large coupled cavity systems in a convenient
laboratory setting. The proposed experimental and theoretical
methods should be useful for analyzing coupled physical
systems whose components exhibit wave chaotic behavior.
Examples include conductance fluctuations of coupled quan-
tum dot systems where the single-electron dynamics in the
dot are chaotic [91] and EM properties such as the shielding
effectiveness and power flow patterns of a coupled enclosure
system. In future work, we will explore the crossover in
system impedance statistics as the enclosures go from weakly
coupled to strongly coupled and investigate systems with
more complex connection topology.
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APPENDIX A: RCM CAVITY CASCADE MODEL

Here we give a brief derivation of expressions for the in-
put and transimpedances of a coupled multienclosure system
through extension of the RCM.

1. Single-cavity treatment

We write the radiation admittance matrix Yrad of a single
cavity as:

Yrad =
[

Yrad,a 0

0 Yrad,b

]
. (A1)

Here Yrad is a block diagonal matrix, where the diagonal
elements Yrad,a or Yrad,b are either the radiation admittance

of the port Yrad,port or the radiation admittance matrix of the
aperture modes Yrad,aper, depending solely on whether a port

or an aperture is connected to that side of the cavity. The
off-diagonal components are set to zero under the assumption
that there is no direct coupling between ports and apertures.
We next incorporate the RCM fluctuating quantities into the
description of the fluctuating cavity admittance. The cavity
admittance matrix Ycav is

Ycav = iIm(Yrad ) + Re(Yrad )0.5ξRe(Yrad )0.5. (A2)

We represent the cavity admittance matrix Ycav (as shown in
Fig. 5) as

Ycav =
[

Yaa Yab

Yba Ybb

]
. (A3)

We then have:[
Ia

Ib

]
= Ycav

[
Ua

Ub

]
=

[
Yaa Yab

Yba Ybb

] [
Ua

Ub

]
, (A4)

where the matrix ξ is the normalized impedance which has

the universal statistical properties predicted by random matrix
theory (whose statistics depend only on the loss parameter α).
The dimension of the matrix ξ is equal to the dimension of

Yrad, which is Na + Nb, where Na or Nb is the dimension of the
radiation admittance matrices on the two sides of this cavity.

FIG. 5. Schematic diagram of the ith cavity in a cascade with
port a on the left and port b on the right. Here U and I refer to the
voltage and current at each port (a vector quantity in general).
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2. Total admittance of an N-cavity chain

After we construct the Ycav matrices for all cavities in the
cascade, we are in position to develop the cascade quantities
for the enclosure chain. For the ith cavity in the cavity cascade
chain, with the information of how the ith cavity is connected
to its left (previous) and right (next) neighboring cavities,
and knowledge of the load admittance presented by the (i +
1)st cavity Y (i+1)

L and everything beyond it, we will have an

iterative approach to calculating the total chain admittance
matrix: [

Ia

Ib

]
= Y (i)

cav

[
Ua

Ub

]

−Ib = YL
(i+1)Ub (A5)

Equation (A5) [same as Eq. (4)] expresses the continuity
of voltage and current in all modes of the aperture. By solving
Eq. (A5) in matrix form, we have:

YL
(i) = Yaa

(i) − Yab
(i)

[
Ybb

(i) + YL
(i+1)

]−1
Yba

(i), (A6)

Ub = −[
Ybb

(i) + YL
(i+1)

]−1
Yba

(i) Ua. (A7)

Equations (A6) and (A7) are in the exact forms of Eqs. (6)
and (5) in the main text. Equation (A6) gives the YL recursion

relationship which calculates the load admittance YL
(i) of

the ith cavity given the YL
(i+1) of the (i + 1)st cavity and

everything beyond it. At the end of the cavity chain, the load
impedance is the VNA measurement port load impedance
Z0 = 50 �. We can now calculate the total load admittance of
the entire structure from the end load all the way back toward
the input port at the first cavity.

3. Input and transimpedances

We will investigate the transimpedance Zt and the input
impedance Zin of the cascaded system from the voltage and YL

recursion relationships [Eq. (A6) and (A7)]. For the scalar Zin,
we have:

Zin = U (1)
a

I (1)
a

= 1

Y (1)
L

, (A8)

where the U (1)
a and I (1)

a refers to the scalar voltage and current
at the input side of the first cavity.

From Eqs. (A6) and (A7), we have:

Zt = U (N )
b

I (1)
a

=
−[

Ybb
(N ) + YL

(N+1)
]−1

Yba
(N ) U (N )

a

I (1)
a

=
−[

Ybb
(N ) + YL

(N+1)
]−1

Yba
(N ) U (N−1)

b

I (1)
a

=
N∏

i=1

{ − [
Ybb

(i) + YL
(i+1)

]−1
Yba

(i)
}U (1)

a

I (1)
a

= �(1)

[
N−1∏
i=2

�(i)

]
�(N )Zin. (A9)

The quantities U (N )
b , I (N )

b , U (1)
a , I (1)

a are the scalar volt-
ages and currents at the load connected to the output side

of the N th cavity (subscript b) and the input port at the first
cavity (subscript a). The multiplier �(i) of the ith cavity is

defined as �(i) = −[Ybb
(i) + YL

(i+1)]
−1

Yba
(i). As discussed in

the main text, the elements of �(i) are small because the matrix

elements of Ybb are larger than Yba. The dimension of �(i)

is (Na, Nb), where Na,b refers to the number of propagating
modes of the aperture at either the a side or the b side of the
cavity. Thus �(i) can be either a matrix or a vector depending
on the specific location of the ith cavity in the entire cascade
chain. For example, �(i) is in vector form at the first or last
cavity (i = 1 or N) since the input or output of such cavity is a
single-mode port. �(i) is a matrix at the intermediate cavities
(i ∈ [2, N − 1]) due to the fact that these cavities are equipped
with multimode apertures at both ends. With Eqs. (A8) and
(A9), we present the full theoretical formulas of Zin and Zt

based on the RCM.

APPENDIX B: EXPERIMENTAL DETAILS, APERTURE
ADMITTANCE CALCULATIONS, AND ADDITIONAL DATA

1. Cavity cascade experimental set-up

The details of the cascade cavity experimental set-up are
shown in Fig. 6. The scaled and full-scale three-cavity cascade
structures are shown in Figs. 6(a) and 6(b), respectively.
The scaled experiments are conducted at the University of
Maryland and the full-scale version at the Naval Research
Laboratory. With the single-cavity losses made equal and
the physical dimensions carefully scaled, nominally identical
electromagnetic conditions are achieved between the two set-
ups [53].

2. Aperture and port radiation admittance studies

The radiation admittance Yrad and impedance Zrad refer
to the cases where apertures or ports radiate into free space
[45,68,69]. Numerical simulations and experimental methods
are adopted in order to characterize the radiation information
of the apertures and ports employed in the experimental
set-ups.

We use CST [92] to calculate the frequency-dependent
radiation admittance matrix of both the scaled and full-scale
apertures. As shown in Fig. 7, the aperture is carved out of
the surface of a perfect electrical conductor (PEC) plate. The
thickness of the PEC plate equals the thickness of the aperture
of interest. The carved plate is attached to a large vacuum box
whose boundaries are assigned as radiating. The simulation is
run in the time domain solver mode. The waveguide port is
assigned at the aperture surface (blue circle in Fig. 7). Given
the operating frequency and the total number of port (which
is the aperture) modes, the simulation directly calculates the
frequency-dependent complex radiation admittance matrix of
the aperture. Similar techniques are employed in the aperture
cross-section numerical study of Ref. [93].

The radiation impedance of the ports are obtained from
experimental methods. For the WR10 waveguide port used
in the scaled set-up, the 1 × 1 radiation S parameter (Srad) is
measured by exposing the bare waveguide flange to a large
radiating environment. The Zrad is then transformed from the
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FIG. 6. (a) The scaled three-cavity cascade case (where the second one is hidden behind the vertical copper supporting plate) connected to
single-mode WR10 waveguides. The inset shows how the second cavity is arranged and the location of the two circular apertures. (b) Picture
of the full-scale cavity cascade set-up with one wall of cavity 2 removed. The cavities are connected through circular apertures. Individual
perturbers and RF absorber cones are employed inside the enclosures (not shown).

measured Srad. For the WR178 waveguide ports used in the
full-scale measurements, time-gating techniques are adopted
to calculate the corresponding Zrad [94,95].

3. Convergence of the RCM cavity cascade formalism with
inclusion of aperture modes

As introduced in the main text, the aperture radiation
admittance Yrad is a (n, n) matrix where n is the total number of
considered aperture modes. Though the total number of prop-
agating modes can be calculated for given aperture dimen-
sions and operating frequency, the choice of the total number
of nonpropagating modes which are taken into account is
unclear. Here we demonstrate that the RCM cavity cascade
formalism can find convergence with an increasing number
of considered nonpropagating modes. As shown in Fig. 8,
the convergence of the model is tested by adding circular
aperture modes from 100 to 140 in the three-cavity connection
case. The statistics obtained from the theoretical model with
different aperture mode numbers remains unchanged beyond
100 modes and agrees well with the experimental results in
that limit.

FIG. 7. The model set-up for aperture admittance matrix cal-
culations in the CST simulations. A PEC plate is carved with the
dimension of the aperture and attached to a vacuum box. The port
is assigned at the 2D surface of the aperture. The wave enters
the aperture (blue arrow) and flows into the vacuum space before
absorbed by the surrounding radiation boundaries (orange arrows).

4. Additional cavity cascade experimental studies

The two- and three-cavity cascade systems are studied ex-
perimentally with various single-cavity loss parameter values.
As shown in Figs. 9(a) and 9(b), the statistics of two- and
three-cavity model and experiment Im(Zt )s are shown with
single-cavity loss parameter α = 5.7 and 7.5, respectively.
The cascaded cavity structure studied in Figs. 9(a) and 9(b)
are full-scale structures with circular-shaped aperture connec-
tions. By placing two and four RF absorber cones in each in-
dividual cavity, single-cavity loss parameters are measured as
α = 5.7 and 7.5, respectively. We observed reasonably good
agreement between the model-generated Im(Zt ) PDFs (solid
lines) and the measured results (dashed lines). In Fig. 9(c),

FIG. 8. Statistics of the imaginary part of the transimpedance
for a scaled three-cavity cascade with circular aperture connections,
illustrating the convergence of the theoretical model with increasing
mode number included in the aperture admittance matrix. The circu-
lar aperture allows 100 propagating modes. The model PDFs curves
are nearly unchanged when the nonpropagating modes are included.
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FIG. 9. [(a) and (b)] Statistics of the imaginary part of the transimpedance of two- and three-cavity cascades when the loss of the system
changes. (c) Comparison of the Re(Zt ) statistics experimental and model results for the scaled two-cavity set-up, with circular aperture
connection. In (a), (b), and (c), the single-cavity loss parameter α is measured to be α = 5.7, 7.5, and 9.1, respectively.

the statistics of the Re(Zt ) of the scaled-down two-cavity
cascade with circular aperture connection are studied. We

observed good agreement between the measured data and
model-generated results.
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